US009081968B2

a2 United States Patent

Pistoia et al.

US 9,081,968 B2
Jul. 14, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

QUANTITATIVE ANALYSIS OF
INFORMATION LEAKAGE
VULNERABILITIES

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Marco Pistoia, Amawalk, NY (US);

Omer Tripp, Har-Adar (IL)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 22 days.

Appl. No.: 14/102,613

Filed: Dec. 11, 2013

Prior Publication Data

US 2015/0161393 Al Jun. 11, 2015

Int. Cl1.
HO4L 29/06
GO6F 21/57
GO6F 21/74
HO4L 29/08
GO6F 3/0481
U.S. CL
CPC

(2006.01)
(2013.01)
(2013.01)
(2006.01)
(2013.01)

GO6F 21/577 (2013.01); GO6F 21/74
(2013.01); HO4L 67/125 (2013.01); GOGF
3/04815 (2013.01); GOGF 2221/033 (2013.01)
Field of Classification Search
CPC GOGF 21/74; GOGF 3/04815; HO4L 67/125
USPC 713/166, 193; 726/22, 27
See application file for complete search history.

100
Leakage)
specification $
107, '-... 1

Perform static analysis at least to
determine sources and sinks

Create leakage specification S
comprising at least indications of
determined sources and sinks

(56) References Cited

U.S. PATENT DOCUMENTS

6,442,212 B1* 82002 Kratochwil 375/265
7,599,491 B2 10/2009 Lambert

2003/0083831 Al 5/2003 Agrawal et al.

2012/0010919 Al* 12012 Aswaletal. ... 705/7.25

FOREIGN PATENT DOCUMENTS

JP 2009225084 10/2009
OTHER PUBLICATIONS

Alvimetal., “Probabilistic Information Flow”, IEEE Computer Soci-
ety, 2010 25th Annual IEE Symposium on Logic in Computer Sci-
ence.

McCamant, “Quantitative Information Flow as Network Flow
Capacity”, MIT Computer Science and AI Lab, Mar. 31, 2008.
Tripp et al., “TAJ: EffectiveTaint Analysis of Web Applications”,
PLDI’09 Jun. 15-19, 2009, Dublin, Ireland, ACM 978-1-60558-392-
1/09/06.

(Continued)

Primary Examiner — Hadi Armouche
Assistant Examiner — Dao Ho
(74) Attorney, Agent, or Firm — Harrington & Smith

(57) ABSTRACT

A method includes recording, during execution of a program
and by a computing system, concrete values exhibited at
source and sink statements in the program. The source state-
ments read confidential information and the sink statements
release the confidential information to an outside environ-
ment. The method includes determining, by the computing
system, using at least the recorded concrete values and
source-sink pairs whether information leakage meeting one
or more quantitative criteria occurs by the program. Appara-
tus and program products are also disclosed.

19 Claims, 5 Drawing Sheets

Static
Analysis
10 201

15217,

For each source and

Instrument (using leakage

1
I specification 8) source and sink
[Free—— | statements to be able to ascertain
Program 1™ ead value or sources and | L
— argument values for sinks (e.g.,

and for thread 1D)

sink statement, add
code to allow dynamic
analysis tool to
determine concrete
values exhibited at
source and sink

Ne
75

Yes
ecution’
[feCeomiines

Source

Using
instrumented
source staternent,
record read value
(e.g.. and thread
D)

(eg.,and
for thread ID)
N
%] Inresponse to execution of a /225
{ method call, consutt specification
S to check if this call is to
security source, sink, or other
30
Other ~Sourcs, sink, o %’;T;s"::
other? 7~ 291

US 9,081,968 B2
Page 2

(56) References Cited
OTHER PUBLICATIONS

Tripp et al., “Hybrid Analysis for JavaScript Security Assessment”,
2010 ACM1-58113-000-00/00/00/0010, Conference *10, Month 1-2,
2010.

Liang et at., “A Dynamic Evaluation of the Precision of Static Heap
Abstractions”, Proceedings of the ACM international conference on
Object oriented programming systems languages and applications
pp. 411-427 ACM New York, NY, USA © 2010.

* cited by examiner

US 9,081,968 B2

Sheet 1 of 5

Jul. 14, 2015

U.S. Patent

gl old
A

¥-0L1 01 L-0/) G/l MOl

Vi "9Old

ool

\

ocl

—

€-0¥l

1o}
N6ip X082 AuQ /7 (¢1)BuL)sqns 1Bl

/

ocl

N

/Ew /1 (joayd)aum ol

yoo;o Buig

c0rl 221n0g jf UWWE_E@ = 1w Buing

/

ol

L-0%1 9ll \\ GLL

oLL

US 9,081,968 B2

Sheet 2 of 5

Jul. 14, 2015

U.S. Patent

JL OIid

001

L-0€l

<

-

0cl
€-oFt

N

/v_c_m. I/ (ayo)em Boj
gal

1. Ind o) Juesy /1 (|)Buisqns sl Vomso Bus

/

-0vl aainog /7 :013nneb = 1Isw) bug

/ A7

L-0%L o_\r\\ GlLl
oLl

End

U.S. Patent

100

(Leakage

spe0|f|cat|onS))
107

Jul. 14, 2015

Sheet 3 of 5

US 9,081,968 B2

v

Periorm static analysis at least to
determine sources and sinks

v

determined sources and sinks

Create leakage specification S
coemprising at least indications of

/210

(instrumented

Program

Instrument (using leakage

specification S) source and sink

read value for sources and

statements to be able to ascertain

argument values for sinks (e.g.,

and for thread ID)

Y

L

/21

/205)

Static
Analysis
201

sink statement, add
code to allow dynamic

determine concrete

For each source and

analysis tool to

Execute instrumented program P

/220
Y

In response to execution of a

Y method call, consult specification
S o check if this call is to a

security source, sink, or other

Using

instrumented
source statement,
record read value
(e.g., and thread
D)

FIG. 2A

values exhibited at

source and sink
statements (e.g., and

for thread llj,)

_‘\

/25

\

Dynamic
Analysis
281

U.S. Patent Jul. 14, 2015 Sheet 4 of 5 US 9,081,968 B2

(&)

/35

Using instrumented sink
statement, record

argument value {e.g.,
and thread ID)

[

Do source and sink
have same thread ID?

No

ame thread ID Dynamic

>- Analysis

50 291

Check for similarity (e.g.,
according to a criterion)
between concrete values
exhibited at source and sink
statements

No

Similar?

Yes /60
Report (e.g., output)
leakage instance, e.qg.,
along with quantitative
measure

FIG. 2B

US 9,081,968 B2

Sheet 5 of 5

Jul. 14, 2015

U.S. Patent

Z6¢t

_‘mm\j\

aNnjeA MUIS BLj) pue anjeA
221N0S 3y} Usamlag aules

|7 su; ale si8j0eIBUD Q) JO G|

{(dosyo)sjum Bo) yuis
12 souelsul abexes| e s1 243y

8t In

06t
(8)acina(|eutalxy

€ Old

A

L]

0z€ (8)4/1 O/l

GIg Aynong

97¢ (s)Aejdsiq

Gee

0€E (S) MN

0L¢ (s)losseoold

coe
|00 sisAjeuy olweuAg

TGE |00 uoneuswngsy|

ol
_/94i5} “(joayd)aim Bol

oge 7

98¢

o
@‘Ummh._._. .m:_m0> AUIS Hulg

¢18¢ o
®

QI PEaIY] 'anjeA 90iN0S ‘80iN0S

Ggg sunsay

GE |00 sisAleuy o1jE)S

sishleuy

L-/8¢’

L

/
N-bbE o
®

OFE |00 sisAjeuy Apinoag

98¢

a|qe] sumuny

001 weiboig

TT¢ ucijeayioads

\ abeyes]

70} wel1boiy
pajuaLInIsL|

GFE (sal)Atowapy

L/ (juig .zm...f.:_._o@ \

00€ weisAs Bugndwon

\ (huig eo1nog)
F l-Lie

US 9,081,968 B2

1

QUANTITATIVE ANALYSIS OF
INFORMATION LEAKAGE
VULNERABILITIES

BACKGROUND

This invention relates generally to analysis of program
code and, more specifically, relates to static and run-time
analysis of program code.

This section is intended to provide a background or context
to the invention disclosed below. The description herein may
include concepts that could be pursued, but are not necessar-
ily ones that have been previously conceived, implemented or
described. Therefore, unless otherwise explicitly indicated
herein, what is described in this section is not prior art to the
description in this application and is not admitted to be prior
art by inclusion in this section.

A main security threat in web and mobile applications is
leakage of secret data. Such leakage may include private
information, such as a person’s contact list, as well as confi-
dential information like sensitive email content (especially
under a “bring your own device” policy). An application may
also leak details about its internal implementation, such as the
type and version of'its backend database, which could be used
by an attacker in crafting other attacks (such as an SQL,
Structured Query Language, injection attack for the example
of a database).

An important source of difficulty in dealing with informa-
tion leakage is to decide whether the released information
indeed constitutes a secret. Here is an example from the
mobile telecommunications area.

The International Mobile Station Equipment Identity
(IMEI) is a number, usually unique, that identifies 3GPP
(third Generation Partnership Project) and iDEN (integrated
Digital Enhanced Network) mobile phones as well as certain
satellite phones. The IMEI consists of 16 digits: the Type
Allocation Code (TAC) is the first 8 digits. The TAC provides
the model and origin of the device. The next 6 digits are a
manufacturer-defined number known as SNR (serial num-
ber). Finally, the last digit is a Luhn check digit, which is a
digit created based on the Luhn algorithm and used to validate
the IMEL

The standard approach to detection of information leakage
problems is to track whether there is data flow from a source
statement reading confidential information to a sink state-
ment releasing this information to the outside environment.
See, for instance, Tripp et al., “TAJ: Effective Taint Analysis
of Web Applications”, PLDI’09, Jun. 15-20, 2009, Dublin,
Ireland. If there is source-to-sink data flow of sensitive infor-
mation, then a leakage vulnerability is reported.

However, in certain instances, this source-to-sink data flow
of information may not actually be a vulnerability.

BRIEF SUMMARY

The following summary is merely intended to be exem-
plary. The summary is not intended to limit the scope of the
claims.

A method includes recording, during execution of a pro-
gram and by a computing system, concrete values exhibited at
source and sink statements in the program. The source state-
ments read confidential information and the sink statements
release the confidential information to an outside environ-
ment. The method includes determining, by the computing
system, using at least the recorded concrete values and
source-sink pairs whether information leakage meeting one

10

15

20

25

30

40

45

50

55

60

65

2

or more quantitative criteria occurs by the program. Appara-
tus and program products are also disclosed.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1A shows a code snippet from a program and is used
to illustrate that a source-to-sink reachability criterion is
overly conservative;

FIG. 1B is a portion of a call graph illustrating objects
having calling relationships for the code snippet of FIG. 1A;

FIG. 1C shows a slightly modified version of the code
snippet from the program of FIG. 1A and is used to illustrate
a leakage instance;

FIG. 2, including FIGS. 2A and 2B, is a logic flow diagram
for quantitative analysis of information leakage vulnerabili-
ties, and illustrates the operation of an exemplary method, a
result of execution of computer program instructions embod-
ied on a computer readable memory, and/or functions per-
formed by logic implemented in hardware, in accordance
with an exemplary embodiment; and

FIG. 3 is a block diagram of an example of a system
suitable for performing the exemplary embodiments herein.

DETAILED DESCRIPTION

As stated above, in certain instances, source-to-sink data
flow of information may not actually be a vulnerability. For
instance, if only the last digit of the IMEI leaks, then there is
no release of secret information. Through this example is for
the mobile IMEI, one can see that the source-to-sink reach-
ability criterion is overly conservative. An example is shown
in FIG. 1A, which shows a code snippet 130 from a program
100 and which is used to illustrate that a source-to-sink reach-
ability criterion is overly conservative.

The code snippet 100 has three statements 140-1, 140-2,
and 140-3. In this example, there is a source 110 that is the
source statement 140-1 and a sink 120 of log.write(check)
that is the sink statement 140-3. As indicated above, a source
110 reads confidential information and a sink 120 releases
this information to the outside environment (that is, outside
the program). The objects imei 115 and check 155 are objects
through which information from the getIMEI method 116
passes. A static analysis performed on code snippet 130 could
yield a number of different models of the code snippet 130.
One such model is shown in FIG. 1B and is a call graph 160,
which represents calling relationships between methods in
the program 100. Specifically, each node 170 represents a
method (as indicated in FIG. 1B) and each edge 180 indicates
that there is a calling relationship between methods. FIG. 1B
is a visual representation of such a call graph, and actual
implementation of call graphs may not produce a visual rep-
resentation (e.g., the call graph could be stored in a data
structure for instance).

The substring() method extracts the characters from a
string, between two specified indices (e.g., “‘start” and “end”),
and returns the new sub string. The “start” is required and
indicates the position where to start the extraction. The first
character is at index 0 (zero). The “end” is optional. The “end”
indicates the position (up to, but not including) where to end
the extraction. If “end” is omitted, the “substring” method
extracts the rest of the string. In the example of FIG. 1, the
“imei.substring(14)” extracts only the fifteenth digit, which is
the Luhn check digit. Thus, the string “check” is only the
fifteenth digit.

Thus, while here the source-to-sink flow 175 exhibits flow
170 of sensitive data, the released information is in fact not

US 9,081,968 B2

3

secret. Experience has shown that examples of'this kind occur
a lot in practice. The reason is that the functionality of many
applications requires that values computed based on confi-
dential data become available to the external world, but these
values often result from applying a reduction operation of
some form to the sensitive data. For instance, the number of
contacts in a person’s contact list may be released but none of
the identities of the contacts may be released.

Techniques for dealing with this limitation of standard
data-flow analysis either build complex probabilistic math-
ematical models of or track flow of information at the bit
level, thereby enabling a quantitative measure of information
release. Building complex models is described in Alvim, et
al., “Probabilistic Information Flow”, 2010 25th Annual
IEEE Symposium on Logic in Computer Science, 2010.
Tracking information at the bit level is described in McCa-
ment and Ernst, “Quantitative Information Flow as Network
Flow Capacity”, PLDI’08, Jun. 7-13, 2008, Tucson, Ariz.,
USA.

There are two fundamental problems with these existing
approaches. The first problem is implementability. It is not
clear how to implement either of these approaches so that the
approach can work in real time, enforcing a precise notion of
information leakage while having an overhead that is suffi-
ciently low to be tolerable by users. The second problem is
accuracy. Ultimately the question of vulnerable information
release requires direct comparison between the values read at
the source and released at the sink. Tracking single bits, or
reasoning about the probability that the value read at the
source is released as-is at the sink, are both too naive to deal
with real-world instances of information release.

In contrast to conventional techniques, exemplary embodi-
ments herein target the problem of detecting vulnerable
instances of information leakage at runtime, during dynamic
execution of the target program. This entails using a runtime
tracking method that is both efficient and accurate. An exem-
plary proposal herein is to record the concrete values exhib-
ited at source and sink statements, along with thread ID
(identification). It is noted that it is possible to perform the
techniques herein without using the thread ID. However, the
thread ID is a useful heuristic that can improve precision.
Then, for pair (x,t) and (y,t), where x and y are the data values
arising at the source and the sink, respectively, and t is the
thread ID (and thus both pairs are due to the same execution
thread), the similarity is computed between x and y as, e.g.,
diff(x,y). The “diff(x,y)” is an identifier that signifies the
distance between the data values x and y according to some
metric space (e.g., Levenshtein distance). If the result shows
x and y to be sufficiently similar (e.g., by a predetermined
“small” distance such as a few characters or some percentage
of the total characters being different, such as 10 percent
difference), then the potential information leakage is reported
to the user, e.g., along with a quantitative measure of how
much information was (or is about to be) leaked.

An exemplary advantage of the instant approaches, in con-
trast with taint tracking, is that there is no need to instrument
the entire program. Instead, only source and sink statements
may undergo instrumentation. The number of these state-
ments is typically negligible compared to all statements in the
program, and thus this is a significant source of overhead
reduction. Regarding accuracy, the instant exemplary
approaches are founded on the assumption that if a person
triggers an operation that leads to reading a secret (the invo-
cation of a source statement), followed by release of a value
that is “similar” to the one read at the source statement, then
a vulnerability has occurred. For this reason, it is required in
an exemplary embodiment that the same thread ID be present.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

A more general statement of this is that the sink invocation
(i.e., the actual information release) occurs in response to the
operation triggering the source call (i.e., reading of the secret
data). Following this rationale, it does not really matter if the
data arising at the sink is derived (either directly or indirectly)
from the source call. A malicious party observing this data has
reason to believe that the data is the information read at the
source because the data arises along a flow involving the
source, and the actual value is similar to the secret.

Before proceeding with a description of a logic flow dia-
gram that represents exemplary main components of a system
as well as their flow of interaction, it is helpful to examine a
case where a leakage instance occurs. FIG. 1C shows a
slightly modified version of the code snippet from the pro-
gram of FIG. 1A and is used to illustrate such a leakage
instance. In this case, the programmer meant to put “14”
inside the parenthetical for the imei.substring method (as in
statement 140-2 of FIG. 1A), but put the number “1” inside
the parenthetical instead, as illustrated by the statement 140-
4. This means that the value written to the sink 120 log.write
(check) would be every digit of the IMEI except the first digit.
Thus, aleakage instance should be reported and a correspond-
ing a quantitative measure could indicate that 15 digits (of 16
digits) are the same between the source value and the sink
value. Thus, a large amount (in terms of bits) of the original
sink value will be released.

Turning to FIG. 2, which includes both FIGS. 2A and 2B,
a logic flow diagram is shown for quantitative analysis of
information leakage vulnerabilities. Furthermore, FIG. 2
illustrates the operation of an exemplary method, a result of
execution of computer program instructions embodied on a
computer readable memory, and/or functions performed by
logic implemented in hardware, in accordance with an exem-
plary embodiment. Additionally, the blocks in FIG. 2 may be
considered to represent means for performing the functions
therein.

The flow of FIG. 2 is divided into at least a static analysis
201 and a dynamic analysis 291. The static analysis 201 is an
analysis of the program P 100 performed without executing
code in the program 100. Instead, one or more models (such
as the call graph 160) of the program are built and used to
analyze the program. Meanwhile, dynamic analysis 291 is
performed by analyzing an executing program (in this case,
an instrumented program). International Business Machine’s
(IBM’s) Security Appscan software program is an example of
a tool that provides both static and dynamic analyses. There
are many other off-the-shelf tools that provide one or both of
static analysis or dynamic analysis capabilities. Additionally,
examples of static analysis are provided in Tripp et al., “TAI:
Effective Taint Analysis of Web Applications”, PLDI’09, Jun.
15-20, 2009, Dublin, Ireland, examples of a hybrid analysis
with both dynamic analysis and static analysis are provided in
Tripp and Weisman, “Hybrid Analysis for JavaScript Security
Assessment”, ESEC/FSE’11: ACM Conference on the Foun-
dations of Software Engineering (2011), and examples of
dynamic analysis is provided in Liang et al., “A Dynamic
Evaluation of the Precision of Static Heap Abstractions”,
Object-Oriented Programming, Systems, Languages &
Applications, 2010.

Consequently, and turning briefly to FIG. 3, it is assumed
there is a computing system 300 that performs the operations
inthe blocks in FIG. 2, e.g., under control at least in part of the
security analysis tool 340. That is, the security analysis tool
340 causes the computing system 300 to perform the opera-
tions in the blocks in FIG. 2. The security analysis tool 340
includes a static analysis tool 350, which is assumed to cause
the computing system 300 to perform the operations in blocks

US 9,081,968 B2

5

205-210. The security analysis tool 340 also has a dynamic
analysis tool 365, which is assumed to cause the computing
system 300 to perform the operations in blocks 220-275.
Additionally, the static analysis tool 350 includes an instru-
mentation tool 353, which is used to instrument sources 110
and sinks 120, as is described below, and is assumed to cause
the computing system 300 to perform the operations in block
215. FIG. 3 is described in more detail below.

Turning back to FIG. 2, concerning static analysis 201, in
block 205, the computing system 300 performs static analysis
of the program P 100 at least to determine sources 110 and
sinks 120. As stated above, the source 110 is the statement
140-1 (of “String imei=getIMEI()”) and the sink 140-3 is
statement 140-3 (of “log.write(check)”). Based upon the
sources 110 and sinks 120, the computing system 300 in
block 210 creates leakage specification S 211 comprising at
least indications of the determined sources 110 and sinks 120.
It is assumed in this example that blocks 205 and 210 deter-
mine all sources 110 and sinks 120 in the program 100.

Inblock 215, the computing system 300 instruments (using
leakage specification S 211) sources 110 and sinks 120 to be
able to ascertain read values for sources and argument values
for sinks. Instrumentation refers to an ability to monitor cer-
tain aspects of a program 100. In this case, the dynamic
analysis tool 365 needs to determine concrete values exhib-
ited at source and sink statements 140. Those concrete values
are the read values for sources and argument values for sinks.
A computing system 300 can instrument source and sink
statements 140 by adding code (block 217) to the program
100 to create the instrumented program 107, which provides
this capability of determining concrete values. Such added
code could provide communication of the concrete values
(e.g., the read value for the source or the argument value for
the sink. For instance, the added code could write the concrete
values to the dynamic analysis tool 365, e.g., “writeValueto-
DynamicAnalysis(imei)”, or could write the concrete values
to a data structure readable by the dynamic analysis tool 365,
e.g., “writeValuetoDataStructure(check)”, or through other
suitable techniques.

It is noted that similar code may be added (blocks 215 and
217) in order for the program 107 to communicate the thread
ID at the source 110 or the sink 120. For instance, the
getThreadld() method may be used in JAVA (a programming
language and computing platform first released by Sun
Microsystems in 1995) to determine a thread ID, and state-
ments similar to those above can be added to the program 100
(to create the instrumented program 107) and to allow the
instrumented program 107 to communicate the thread ID to
the dynamic analysis tool 365. Similar types of thread iden-
tification methods may be used in other languages.

It is noted that the static analysis and instrumentation is
typically performed using source code. However, other code
such as executable code may also be used.

In this example, the instrumentation performed in block
215 is not considered to be part of the static analysis 201, and
is performed subsequently to the static analysis 201. How-
ever, block 215 could be performed as part of the static analy-
sis 201, such as in block 205, for each determined source 110
or sink 120. Note that it is typically the case that a source-sink
pair is used, as there could be, for instance, information from
sources that does not reach sinks, and sinks that do not use
information from sources. Additionally, although multiple
sources may terminate in a single sink, for ease of tracking
and other reasons, these are viewed from the perspective of
individual source-sink pairs.

Block 220 begins the dynamic analysis 291 and the execu-
tion of the instrumented program 107. That is, an executable

10

15

20

25

30

35

40

45

50

55

60

65

6

version of the instrumented program 107 is executed and the
dynamic analysis tool 365 then examines the executable ver-
sion. The computing system 300, in block 225, in response to
execution of a method call, consults specification S 211 to
check whether this is a security source, sink, or other. The
“other” is a method call that does not relate to a source 110 or
sink 120. It is noted that the dynamic analysis tool 365 can
determine when a method call is performed through instru-
mentation corresponding to the method call (as is known and
performed in current systems). In block 230, the computing
system 300 determines whether this is a call to a source 110,
sink 120, or other.

If'the call is to method other than a source 110 or a sink 120
(block 230=0ther), the flow continues to block 270. In block
270, the computing system 300 determines whether the
execution is complete. If the execution is not complete (block
270=No), flow returns to block 220, where execution of the
instrumented program 107 is continue. If execution is com-
plete (block 270=Yes), the flow ends in block 275.

If the call is to a source 110 (block 230=Source), the
computing system 300 in block 265, using the instrumented
source statement, records the read value. Typically, as
described above, this may be performed via code added to the
program 100 (and in the instrumented program 107) to com-
municate the read value to the dynamic analysis tool 365. The
thread ID may also be recorded in block 265. Note the thread
1D is also communicated via the instrumented program 107 to
the dynamic analysis tool 365, e.g., using code added to the
program 100. The flow then proceeds to block 270.

Ifthe call is to a sink 120 (block 230=Sink), flow proceeds
to block 235. In block 235, the computing system 300, using
the instrumented sink statement 145, records the argument
value. Typically, as described above, this may be performed
via code added to the program 100 (and in the instrumented
program 107) to communicate the argument value to the
dynamic analysis tool 365. The thread ID may also be
recorded in block 235. Note the thread ID is also communi-
cated via the instrumented program 107 to the dynamic analy-
sis tool 365, e.g., using code added to the program 100.
Additionally, the thread ID may be recorded in block 235.
Note that examination and recording of the thread ID is
optional. Further, note that the analysis simply sees occur-
rences of sources and sinks. These could come from different
threads, e.g., in response to unrelated events. In block 240, it
is determined if the source 110 and sink 120 have the same
thread ID. If not (block 245=No), flow proceeds to block 270.

If so (block 245=Yes), flow proceeds to block 250, where
the computing system 300 checks for similarity (e.g., accord-
ing to a criterion) between concrete values exhibited at source
and sink statements. The Levenshtein distance is one such
example. Another example is the Hamming distance (if the
strings have the same length). The concrete values are the
recorded read value stored in block 265 and the recorded
argument value stored in block 235. In FIG. 1A for instance,
the recorded read value would be the value of the IMEI in the
string “imei” 115 that is set by the method getIMEI() 116.
The recorded argument value is the value of the string
“check”, which is passed to the sink 120 of log.write.

If the two concrete values for the source and sink state-
ments are not similar (block 255=No), the flow proceeds to
block 270. If the two concrete values for the source and sink
statements are similar (e.g., according to a criterion) (block
255=Yes), in block 260 the computing system 300 reports
(e.g., outputs) the leakage instance, e.g., along with a quan-
titative measure to provide a measure of the importance ofthe
leakage. This is explained in more detail below.

US 9,081,968 B2

7

It is noted that the flow in FIG. 2 is merely exemplary. For
instance, the dynamic analysis 291 is assumed to comprise
blocks 220-275. However, it would be possible for a dynamic
analysis 291 to simply record concrete values for sinks and
sources. Flow after block 235 would then proceed to block
270. Once execution of the program is complete (block
270=Yes), then blocks 240-260 may be performed.

Referring to FIG. 3, this figure provides an overview of a
computing system 300 suitable for use with exemplary
embodiments herein. The computing system 300 comprises
one or more memories 345, one or more processors 310, one
or more I/O interfaces 320, and one or more wired or wireless
network interfaces 330. Alternatively or in addition to the one
or more processors 310, the computing system 300 may com-
prise circuitry 315. The computing system 300 is coupled to
orincludes one or more displays 376 and one or more external
device(s) 390. In one example, the one or more memories 345
comprise an instrumented program 107, a program 100, a
leakage specification 211, a runtime table 386, a security
analysis tool 340, and analysis results 385. The security
analysis tool 140 includes a static analysis tool 350, an instru-
mentation tool 353, and a dynamic analysis tool 365.

The security analysis tool 340, in an exemplary embodi-
ment, is implemented computer-readable program code that
is executable by the one or more processors 310 to cause the
computing system 300 to perform one or more of the opera-
tions described herein. In another example, the operations
may also be performed, in part or completely, by circuitry 315
that implements logic to carry out the operations. The cir-
cuitry 315 may be implemented as part of the one or more
processors 310 or may be separate from the one or more
processors 310. The processors 310 may be any processing
units, such as digital signal processors and/or single-core or
multi-core general purpose processors. The circuitry 315 may
be any electronic circuit such as an application specific inte-
grated circuit or programmable logic. In an example, the
static analysis tool 350 causes the computing system 300 to
perform the static analysis 201 of FIG. 2, the instrumentation
tool 353 causes the computing system 300 to perform block
215 of FIG. 2, and the dynamic analysis tool 365 causes the
computing system 300 to perform the dynamic analysis 291
of FIG. 2.

The memories 345 may comprise non-volatile and/or vola-
tile RAM (random access memory), cache memory, NAND-
based flash memory, long term storage (e.g., hard drive),
and/or read only memory. The one or more 1/O interfaces 320
may include interfaces through which a user may interact
with the computing system 300. The display(s) 376 may be a
touchscreen, flatscreen, monitor, television, projector, as
examples.

A user interacts with the security analysis tool 340 through
the U1 180 on the display 376 in an exemplary embodiment or
through the network interface(s) 330 in another non-limiting
embodiment. The external device(s) 390 enable a user to
interact in one exemplary embodiment with the computing
system 300 and may include a mouse, trackball, keyboard,
and the like. The network interfaces 330 may be wired and/or
wireless and may implement a number of protocols, such as
cellular or local area network protocols. The elements in
computing system 300 may be interconnected through any
technology, such as buses, traces on a board, interconnects on
semiconductors, and the like.

An exemplary leakage specification 211 is shown as a
plurality (N) of source-sink pairs 311, where each source-sink
pairs comprises one source 110 and one corresponding sink
120 such that a flow 175 of possibly tainted input flows from
the source 110 to the sink 120. In FIGS. 1A and 1C, the source

5

10

15

20

25

30

35

40

45

50

55

60

8

110 is the statement 140-1 and the sink 120 is log.write
(check). It is noted that additional material could be stored,
such as locations (e.g., lines) in the program 100 where the
source and sink are.

A runtime table 386 is one example of what might be
created by the dynamic analysis tool 365 during the dynamic
analysis 291. It is noted that a “table” is used for simplicity
and the actual implementation may vary. The runtime table
386 may be created and updated when block 265 is per-
formed, which is where the read value and thread ID for the
source are recorded. Additionally, the runtime table 386 may
be created and updated when block 235 is performed, which
is where the argument value and the thread ID for the sink are
recorded. In this example, the runtime table 386 includes an
entry 387-1 having a source, a source value, and a thread ID.
The “source” in the runtime table 386 would be one of the
sources in the source-sink pairs 311. The runtime table 386
includes an entry 387-2 having a sink, a sink value, and a
thread ID. The “sink” in the runtime table 386 would be one
of' the sinks in the source-sink pairs 311.

Also shown is an exemplary analysis results 385, which in
this example contains an entry 388 of “log.write(check)”,
which is an indication of the sink 120, and “15/16”, which is
an indication of a quantitative measure of the amount of
information release. This example assumes the scenario of
FIG. 1C, where the string “check” includes 15 of the 16
characters in the IMEI from the getIMEI method 116. The
dynamic analysis tool 365 in this example also outputs on Ul
380 an indication 391 of the leakage instance corresponding
to the sink in the entry 388 in the analysis results 385. The
indication 391 states “There is a leakage instance at sink
log.write(check);”. The dynamic analysis tool 365 in this
example also outputs on Ul 380 an indication 392 of the
quantitative measure in the entry 388 in the analysis results
385. The indication 392 states “15 of 16 characters are the
same between the source value and the sink value”.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction

US 9,081,968 B2

9

execution system, apparatus, or device. A computer readable
storage medium does not include a propagating wave.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, or the like and conventional procedural program-
ming languages, such as the “C” programming language or
similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

10

15

20

25

30

35

40

45

50

55

60

65

10

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:

1. A method, comprising:

during execution of a program, recording by a computing

system concrete values exhibited at source and sink
statements in the program, wherein source statements
read confidential information and sink statements
release the confidential information to an outside envi-
ronment;

determining, by the computing system, using at least the

recorded concrete values and source-sink pairs whether

information leakage meeting one or more quantitative

criteria occurs by the program, at least by the following:

determining, in response to the source and sink in a
source-sink pair having a same thread identification,
information leakage by the sink statement in a source-
sink pair by determining a quantitative measure of an
amount of information released by the sink statement
in the source-sink pair; and

determining whether the quantitative measure meets the
one or more quantitative criteria, wherein the quanti-
tative measure of the amount of information release is
a number of bits that are the same between a source
value and a sink value for the source-sink pair,
wherein the number of bits that are the same between
the source value and the sink value for the source-sink
pair is determined using a difference function com-
paring the source and sink values and signifying a
distance between the source and sink values accord-
ing to a metric.

2. The method of claim 1, wherein the source value and the
sink value are strings.

3. The method of claim 1, wherein the difference function
comprises one of a Levenshtein distance or a Hamming dis-
tance.

4. The method of claim 1, wherein the source statements
and the sink statements are instrumented to allow the record-
ing of the concrete values exhibited at the source statements
and sink statements during execution of the program.

5. The method of claim 4, further comprising instrument-
ing the source statements and the sink statements to allow the

US 9,081,968 B2

11

recording of the concrete values exhibited at the source state-
ments and sink statements during execution of the program.

6. The method of claim 1, wherein concrete values exhib-
ited at the source statements are values read by the source
statements.

7. The method of claim 1, wherein concrete values exhib-
ited at the sink statements are argument values used by the
sink statements.

8. The method of claim 1, wherein the source-sink pairs
were previously determined by a static analysis performed on
the program to determine flows that start at sources in the
source-sink pairs and end at corresponding sinks in the
source-sink pairs.

9. The method of claim 1, wherein;

recording further comprises recording thread identifica-

tions corresponding to the source and sink statements
reached in the program; and

determining information leakage further comprises deter-

mining information leakage occurs only for source-sink
pairs having same thread identifications for the source
statement and the sink statements in individual ones of
the source-sink pairs.

10. An apparatus, comprising:

one or more memories comprising computer-readable

code;

one Or more processors,

wherein the one or more processors are configured, in

response to execution of the computer-readable code, to
cause the apparatus to perform the following:

during execution of a program, recording by a computing

system concrete values exhibited at source and sink
statements in the program, wherein source statements
read confidential information and sink statements
release the confidential information to an outside envi-
ronment;

determining, by the computing system, using at least the

recorded concrete values and source-sink pairs whether

information leakage meeting one or more quantitative

criteria occurs by the program, at least by the following:

determining, in response to the source and sink in a
source-sink pair having a same thread identification,
information leakage by a sink statement in the source-
sink pair by determining a quantitative measure of an
amount of information released by the sink statement
in the source-sink pair; and

determining whether the quantitative measure meets the
one or more quantitative criteria, wherein the quanti-
tative measure of the amount of information release is
a number of bits that are the same between a source
value and a sink value for the source-sink pair,
wherein the number of bits that are the same between
the source value and the sink value for the source-sink
pair is determined using a difference function com-
paring the source and sink values and signifying a
distance between the source and sink values accord-
ing to a metric.

11. The apparatus of claim 10, wherein the source value
and the sink value are strings.

12. The apparatus of claim 10, wherein the difference func-
tion comprises one of a Levenshtein distance or a Hamming
distance.

25

30

35

40

45

12

13. The apparatus of claim 10, wherein the source state-
ments and the sink statements are instrumented to allow the
recording of the concrete values exhibited at the source state-
ments and sink statements during execution of the program.

14. The apparatus of claim 13, further comprising instru-
menting the source statements and the sink statements to
allow the recording of the concrete values exhibited at the
source statements and sink statements during execution of the
program.

15. The apparatus of claim 10, wherein concrete values
exhibited at the source statements are values read by the
source statements.

16. The apparatus of claim 10, wherein concrete values
exhibited at the sink statements are argument values used by
the sink statements.

17. The apparatus of claim 10, wherein the source-sink
pairs were previously determined by a static analysis per-
formed on the program to determine flows that start at sources
in the source-sink pairs and end at corresponding sinks in the
source-sink pairs.

18. The apparatus of claim 10, wherein;

recording further comprises recording thread identifica-

tions corresponding to the source and sink statements
reached in the program;

determining information leakage further comprises deter-

mining information leakage occurs only for source-sink
pairs having same thread identifications for the source
statement and the sink statements in individual ones of
the source-sink pairs.

19. A computer program product comprising a computer
readable storage device having program code embodied
therewith, the program code executable by a computing sys-
tem to cause the computing system to perform:

during execution of a program, recording by a computing

system concrete values exhibited at source and sink
statements in the program, wherein source statements
read confidential information and sink statements
release the confidential information to an outside envi-
ronment; and

determining, by the computing system, using at least the

recorded concrete values and source-sink pairs whether

information leakage meeting one or more quantitative

criteria occurs by the program, at least by the following:

determining, in response to the source and sink in a
source-sink pair having a same thread identification,
information leakage by a sink statement in the source-
sink pair by determining a quantitative measure of an
amount of information released by the sink statement
in the source-sink pair; and

determining whether the quantitative measure meets the
one or more quantitative criteria, wherein the quanti-
tative measure of the amount of information release is
a number of bits that are the same between a source
value and a sink value for the source-sink pair,
wherein the number of bits that are the same between
the source value and the sink value for the source-sink
pair is determined using a difference function com-
paring the source and sink values and signifying a
distance between the source and sink values accord-
ing to a metric.

#* #* #* #* #*

